Selasa, 29 November 2011

Prinsip Kerja Mesin Diesel


Oleh: Jayan Sentanuhady
Motor diesel dikategorikan dalam motor bakar torak dan mesin pembakaran dalam (internal combustion engine) (simplenya biasanya disebut “mobor bakar” saja). Prosip kerja motor diesel adalah merubah energi kimia menjadi energi mekanis. Energi kimia di dapatkan melalui proses reakasi kimia (pembakaran) dari bahan bakar (solar) dan oksidiser (udara) di dalam silinder (ruang bakar).

double_piston.pngPada motor diesel ruang bakarnya bisa terdiri dari satu atau lebih tergantung pada penggunaannya dan dalam satu silinder dapat terdiri dari satu atau dua torak. Pada umumnya dalam satu silinder motor diesel hanya memiliki satu torak.
Prinsip Kerja
Tekanan gas hasil pembakaran bahan bakan dan udara akan mendorong torak yang dihubungkan dengan poros engkol menggunakan batang torak, sehingga torak dapat bergerak bolak-balik (reciprocating). Gerak bolak-balik torak akan diubah menjadi gerak rotasi oleh poros engkol (crank shaft). Dan sebaliknya gerak rotasi poros engkol juga diubah menjadi gerak bolak-balik torak pada langkah kompresi.
Berdasarkan cara menganalisa sistim kerjanya, motor diesel dibedakan menjadi dua, yaitu motor diesel yang menggunakan sistim airless injection (solid injection) yang dianalisa dengan siklus dual dan motor diesel yang menggunakan sistim air injection yang dianalisa dengan siklus diesel (sedangkan motor bensin dianalisa dengan
siklus otto).
pv_diesel_2stroke.png
Perbedaan antara motor diesel dan motor bensin yang nyata adalah terletak pada proses pembakaran bahan bakar, pada motor bensin pembakaran bahan bakar terjadi karena adanya loncatan api listrik yang dihasilkan oleh dua elektroda busi (spark plug), sedangkan pada motor diesel pembakaran terjadi karena kenaikan temperatur campuran udara dan bahan bakar akibat kompresi torak hingga mencapai temperatur nyala. Karena prinsip penyalaan bahan bakarnya akibat tekanan maka motor diesel juga disebut compression ignition engine sedangkan motor bensin disebut spark ignition engine.

Kamis, 17 November 2011

Cara Kerja HandPhone

3.1 Pendahuluan
Sebelum anda melangkah lebih jauh tentang mereparasi handphone, tentunya anda harus memahami dulu prinsip kerja handphone agar dapat mempermudah proses analisa kerusakan pada ponsel.
Pada bab ini akan dibahas secara garis besar dan secara umum, karena perkembangan teknologi selular saat ini selalu berubah.
3.2 Pusat pengolahan perintah input/output.
3.2.1 Perintah input.
Setiap anda melakukan perintah kepada ponsel, misalkan mengetik sms, memainkan game, merubah pengaturan ponsel, merekam suara, foto, dan lain-lain. Semua perintah diatas merupakan suatu perintah dari pengguna ponsel kepada ponsel, dimana perintah tersebut bisa melewati alat seperti: keypad, kamera, infra red, Bluetooth. Semua perintah input tersebut akan diterima oleh CPU, kemudian CPU akan mengolah semua perintah masukan tersebut. CPU dapat memproses semua perintah input berdasarkan data operating system yang terdapat pada IC flash. IC flash akan menyimpan data input tersebut bila diperintahkan oleh CPU, Sedangkan IC RAM akan menerima data dari CPU untuk sementara.


3.2.1 Perintah Output.
CPU akan memberikan terusan perintah dari perintah input, perintah dari CPU sangat universal pada keseluruhan system navigasi handphone misalkan: memberikan perintah untuk menampilkan informasi grafik pada LCD, memberikan perintah kepada UI (vibrator, buzzer, led), memberikan perintah kepada power supply untuk meretribusikan tegangan, dan lain-lain.


3.3 Power Supply
3.3.1 Power up/down (On/Off)
Proses untuk menghidupkan ponsel tidak sama dengan rangkaian elektronik biasa seperti TV radio dll. Pada system handphone hampir sama dengan computer, dimana proses menghidupkan ataupun mematikan tidak dengan cara melepaskan hubungan daya kepada power supply. Pada system computer sebenarnya bila diberikan daya, system tersebut berfungsi hanya saja dalam keadaan nonaktif, bila di analogikan kepada manusia dalam keadaan tertidur, dimana system tersebut akan siap diberi perintah kapanpun untuk mengaktifkan semua system. Oleh karna itu bila handphone telah di pasangkan battery maka tegangan battery akan langsung masuk kepada IC power Supply, disaat bersamaan IC power supply akan memberikan tegangan kepada bagian processor. rangkaian SW On/Off handphone dapat anda lihat pada gambar diawah ini.

3.3.1 Distribusi tegangan
Rangkaian pada handphone terdapat banyak subsistemnya, yang mana setiap sub system mempunyai kebutuhan supply tegangan yang berbeda-beda dan pada setiap system akan diberikan tegangan bila disaat diperlukan. Daya pada handphone pertama diberikan oleh battery, tegangan dari battrey akan dilanjutkan kepada IC power supply, oleh IC power supplylah semua supply tegangan akan diberikan tergantung kebutuhannya.


3.3.1 Pengisian battery
Proses pengisian battery pada handphone sangat teliti sekali, dimana system pengisian akan diatur secara komputerisasi. Tegangan battery akan di diteksi oleh IC power supply dan CPU, bila battery dalam keadaan penuh maka handphone akan menolak pengisian dari trafo charger. System pengisian ini diproses oleh IC charging.
3.4 Transmisi data informasi
Pada dasarnya system transmisi pada system komunikasi terdapat dua system, bagian penerimaan (receiver) yang berfungsi sebagai penerimaan data informasi suara ataupun data alfanumerik dan grafik dari base station kepada handphone. Sedangkan bagian pemancaran (transmitter) berfungsi sebagai pengiriman data informasi suara ataupun data alfanumerik, grafik dan proses registrasi jaringan.
3.4.1 Proses registrasi jaringan
3.4.1.1 Inisialisasi
Pertama kali ponsel anda melakukan proses pemanggilan disebut dengan inisialisasi. Hal ini terjadi saat anda pertama kali mengaktifkan ponsel anda. Anda akan mendapatkan koneksi dari sell site terdekekat, kemudian jaringan seluler akan melakukan pemeriksaan account atau keanggotaan anda masih aktif atau tidak, maka panggilan anda akan diproses lebih lanjut.
3.4.1.2 Pemeriksaan daftar frekuensi
Ponsel anda akan melakukan pemeriksaan daftar frekuensi yang ada di SIM anda. Pemeriksaan meliputi kualitas aliran frekuensi carrie, kemudian mencari Broadcash Control Channel atau BCCH. Setiap BCCH akan mentransmisikan penanda data yang unik, membedan antara AMPS dan GSM. Di system AMPS menggunakan system frekuensi radio yang terdedikasi pada setiap sel, sedangkan pada GSM semua frekuensi dapat membawa informasi, akan tetapi yang lebih penting adalah channel yang digunakan untuk aliran datanya bukan radio frekuensinya
3.4.1.3 Identifikasi informasi
Base station atau Broadcash Control Center akan melanjutkan pengiriman untuk melakukan identifikasi informasi tentang sell site. Identitas jaringan tersebut adalah Carreier wireless itu sendiri, kode area lokasi saat itu, dan frekuensi yag digunakan, serta informasi tentang sel sekitarnya. Kesemua informasi tersebut digunakan untuk mengetahui apakah ponsel anda sedang aktif dan membutuhkan pelayanan. BCCH adalah bukan merupakan frekuensi radio yang didedicated. BBCH akan menggunakan channel yang akan membawa informasi dalam bentuk bit pada semua frekuensi didalam sebuah sel.
3.4.1.4 Pemeriksaan Broadcash Control Control Channel
Frekuensi radio ponsel akan melakukan pemeriksaan bradcash control channel, dimana ponsel anda akan mengirimkan sinyal untuk memriksa apakah sinyal tersebut masih di dalam jangkauan. Ponsel akan melakukan scanning seperti radio keseluruh daftar frekuensi BCCH satu-persatu serta memeriksa penerimaan sinyal. Pengukuran akan dilakukan pada setiap level channel. Cell site akan mengirimkan sinyal kuat ke ponsel anda. Sementara itu di broadcash control channel yang merupakan mobile monitor melakukan data stream dari ase station yang disebut frekuensi control burs atau frequency control channel burs (FCCB). Sinyal ponsel mobile anda akan melakukan sinkronisasi dengan system selular dengan sarana koneksi wireless. Setelah ponsel anda dengan base station telah berkomunikasi, maka semuanya siap digunakan.
3.4.2. Pemancaran data informasi
3.4.2.1. pengolahan signal data suara, grafik, alfanumerik.
Disaat pengguna handphone sedang melakukan komunikasi, maka gelombang sinyal suara yang dihasilkan dari pengguna ponsel akan merambat di udara. Gelobang signal suara tersebut akan di terima oleh microphone untuk dirubah menjadi gelombang elektromagnetik. Dan akan dilanjutkan kepada bagian audio processor untuk dikuatkan dan diproses.
Jika pengguna handphone melakukan sms, maka perintah yang di ketik oleh pengguna handphone kepada keyboard akan di proses oleh CPU (Central Proccesor Unit)
3.4.2.2. perubahan signal digital menjadi signal analog (D/A Converter).
Pada bagian ini signal data informasi akan dikonversikan menjadi berbentuk signal analog. Sebab pada bagian RF masih menggunakan signal berbentuk analog sedangkan pada bagian processor utama karakternya berbentuk digital. Hal ini perlu adanya penyesuaian antara dua karakter yang berbeda agar dapat saling berhubungan.
Selanjutnya signal data informasi yang telah di konversikan akan dilanjutkan kepada bagian RF.
3.4.2.3. Pencampuran signal data dengan signal pembawa.
Signal data informasi akan dikirim kepada base station, tentunya harus ada yang membawa signal data informasi tersebut. Oleh karena itu signal data informasi akan dicampur dengan signal pembawa oleh RF processor. Signal pembawa pada teknologi GSM mempunyai kisaran frekuensi 900-1900 MHz, gelombang ini awalnya dihasilkan oleh VCO, dimana VCO akan menghasilkan gelombang sebesar 3420-3840 MHz yang selanjutnya akan di olah oleh RF processor.
Setelah signal data informasi sudah dicampur dengan signal pembawa maka akan dilanjutkan kepada bagian penguatan.sistem ini dinamakan dengan Modulasi.
3.4.2.4. Penguatan akhir
Signal data informasi yang sudah dicampur dengan signal pembawa akan diterima oleh base station, sedangkan jarak handphone kepada base station cukup jauh. Maka signal tersebut harus betul-betul kuat agar dapat di terima oleh base station. Maka signal tersebut harus diperkuat oleh PA Power Amplyfier. Bila penguatan akhir pada bagian pengiriman tidak berfungsi dengan baik maka ponsel tidak akan bisa meregistrasikan jaringan kepada operator, hal ini di sebabkan karena base station tidak dapat menerima signal data informasi dari handphone.
3.4.2.5. Pembagian jalur Transmisi
Setelah dikuatkan maka signal akan dilanjutkan kepada antenna switch untuk di hubungkan kepada antenna. Antenna switch dapat di analogikan seperti bandara, dimana pada bagian transmisi data informasi pada handphone terdapat dua jalur, yaitu penerimaan dan pemancaran. Maka tanpa adanya antenna switch signal yang di terima dengan signal yang akan dipancarkan akan saling bertabrakan, karena pada teknologi GSM hanya ada terdapat satu jalur yang sebut dengan system TDMA.
3.4.2.6. Pemancaran ke base station
Signal selanjutnya akan dipancarkan melalui antenna kepada base station. Antenna akan menetukan hasil dari pemancaran, maka lemah atau kuatnya signal tergantung dari kualitas antennanya.
3.4.3. Penerimaan data informasi.
3.4.3.1. Penerimaan data dari base station
Signal informasi yang dipancarkan base station akan diterima terlebih dahulu oleh antenna handphone. Dan selanjutnya akan di teruskan kepada antenna switch untuk di teruskan kepada LNA.
3.4.3.2. Pembagian jalur transmisi
Agar signal pemancaran dengan signal penerimaan tidak bertabrakan, maka akan dibagi terlebih dahulu transmisi signalnya oleh antenna switch.
3.4.3.3. Penguatan awal
Agar signal dapat diterima dengan baik oleh bagian RF, signal yang dipancarkan oleh base station akan dikuatkan terlebih dahulu oleh LNA (Low Noise Amplyfier). LNA bukan saja difungsikan sebagai penguatan saja, tetapi dapat di fungsikan sebagai pemotong noise (desah).
3.4.3.4. Pemisahan signal pembawa dengan signal informasi
Signal yang dihasilkan oleh LNA masih tercampur dengan signal pembawa, agar dapat diproses oleh bagian DSP (Digital signal proccersor) maka signal data informasi harus dipisahkan terlebih dahulu oleh RF processor. System ini dinamakan dengan Demodulasi.
3.4.3.5. perubahan signal analog menjadi signal digital (D/A Converter).
Pada bagian ini signal data informasi akan dikonversikan menjadi berbentuk signal digital. Sebab pada bagian RF masih menggunakan signal berbentuk analog sedangkan pada bagian processor utama karakternya berbentuk digital. Hal ini perlu adanya penyesuaian antara dua karakter yang berbeda agar dapat saling berhubungan.
Selanjutnya signal data informasi yang telah di konversikan akan dilanjutkan kepada bagian processor utama (CPU). Bila signal data informasi tersubut adalah suara maka akan dilanjutkan kepada audio amplifier.
3.4.3.6. Penguatan akhir pada signal suara
Bila signal data informasi tersebut data suara, maka akan dikuatkan terlabih dahulu oleh audio amplifier sebelum dilanjutkan kepada speakers. Signal audio tersebut akan dirubah menjadi gelombang elektromagnetik, selanjutnya akan di hubungkan kepada speakers agar signal elektromagnetik tersebut menjadi signal suara yang merambat diudara agar dapat di dengar oleh telinga manusia.

Sniper rifle

From Wikipedia, the free encyclopedia
The 7.62x51mm M40, United States Marine Corps standard-issue sniper rifle.
The Accuracy International Arctic Warfare series of sniper rifles is standard issue in the armies of many countries, including those of Britain and Germany (picture shows a rifle of the German Army).
Bor – the 7.62×51 mm Polish bolt-action sniper rifle.
In military and law enforcement terminology, a sniper rifle is a precision-rifle used to ensure more accurate placement of bullets at longer ranges than other small arms. A typical sniper rifle is built for optimal levels of accuracy, fitted with a telescopic sight and chambered for a military centerfire cartridge. The term is often used in the media to describe any type of accurized firearm fitted with a telescopic sight that is employed against human targets, although "sniping rifle" or "sniper's rifle" is the technically correct fashion to refer to such a rifle.
The military role of sniper (a term derived from the snipe, a bird which was difficult to hunt and shoot) dates back to the turn of the 18th century, but the true sniper rifle is a much more recent development. Advances in technology, specifically that of telescopic sights and more accurate manufacturing, allowed armies to equip specially trained soldiers with rifles that enable them to deliver precise shots over greater distances than regular infantry weapons. The rifle itself could be based on a standard rifle (at first, a bolt-action rifle); however, when fitted with a telescopic sight, it becomes a sniper rifle.

Contents

 [hide

[edit] History

During World War II, the (7.62x54mmR) Mosin-Nagant rifle mounted with a telescopic sight was commonly used as a sniper rifle by Russian snipers.
Vietnam War era sniper rifles, US Army XM21 (top) and USMC M40 (bottom)
In the American Civil War Confederate troops equipped with barrel-length three power scopes mounted on the exceptionally accurate British Whitworth rifle had been known to kill Union officers at ranges of about 800 yards (731.5m), an unheard-of distance at that time.[1][2][3][4]
The earliest sniper rifles were little more than conventional military or target rifles with long-range "peep sights" and Galilean 'open telescope' front and rear sights, designed for use on the target range. Only from the beginning of World War I did specially adapted sniper rifles come to the fore. Germany deployed military caliber hunting rifles with telescopic sights, and the British used Aldis, Winchester and Periscopic Prism Co. sights fitted by gunsmiths to regulation SMLE Mk III and Mk III* or Enfield Pattern 1914 rifles; the Canadian Ross rifle was also employed by snipers after it had been withdrawn from general issue.
Typical World War II-era sniper rifles were generally standard-issue battle rifles, selected for accuracy, with a 2.5x or 3x telescopic sight and cheek-rest fitted and the bolt turned down if necessary to allow operation with the scope fitted. Australia's No.1 Mk III* (HT) rifle was a later conversion of the SMLE fitted with the Lithgow heavy target barrel at the end of WW2. By the end of the war, forces on all sides had specially trained soldiers equipped with sniper rifles, and they have played an increasingly important role in military operations ever since.

[edit] Classification

Modern sniper rifles can be divided into two basic classes: military and law enforcement.

[edit] Military

U.S. Marine Corps SRT sniper team with an M24 sniper rifle, during sniper training.
Sniper rifles aimed at military service are often designed for very high durability, range, reliability, sturdiness, serviceability and repairability under adverse environmental and combat conditions, at the sacrifice of a small degree of accuracy. Military snipers and sharpshooters may also be required to carry their rifles and other equipment for long distances, making it important to minimize weight. Military organizations often operate under strict budget constraints, which influences the type and quality of sniper rifles they purchase.

[edit] Law enforcement

Sniper rifles built or modified for use in law enforcement are generally required to have the greatest possible accuracy, more than military rifles, but do not need to have as long a range.
As law enforcement-specific rifles are usually used in non-combat (often urban) environments, they do not have the requirement to be as hardy or portable as military versions; nevertheless they may be smaller, as they do not need very long range.
Some of the first sniper rifles designed specifically to meet police and other law-enforcement requirements were developed for West German police after the Munich massacre at the 1972 Summer Olympics. Many police services and law enforcement organizations (such as the U.S. Secret Service) now use rifles designed for law enforcement purposes.
The Heckler & Koch PSG1 is one rifle specifically designed to meet these criteria and is often referred to as an ideal example of this type of sniper rifle. The FN Special Police Rifle was built for and is marketed to law enforcement rather than military agencies.

[edit] Distinguishing characteristics

Looking through a telescopic sight.
PSO-1 Sniper Scope Reticle
1 - Lead/deflection scale
2 - Main targeting chevron
3 - Bullet drop chevrons
4 - Rangefinder
The features of a sniper rifle can vary widely depending on the specific tasks it is intended to perform. Features that may distinguish a sniper rifle from other weapons are the presence of a telescopic sight, unusually long overall length,[5] a stock designed for firing from a prone position, and the presence of a bipod and other accessories.

[edit] Telescopic sight

The single most important characteristic that sets a sniper rifle apart from other military or police small arms is the mounting of a telescopic sight, which is relatively easy to distinguish from smaller optical aiming devices found on some modern assault rifles and submachine guns. This also allows the user to see farther.
The telescopic sights used on sniper rifles differ from other optical sights in that they offer much greater magnification (more than 4x and up to 40x), and have a much larger objective lens (40 to 50 mm in diameter) for a brighter image.
Most telescopic lenses employed in military or police roles have special reticles to aid with judgment of distance, which is an important factor in accurate shot placement due to the bullet's trajectory.

[edit] Action

The choice between bolt-action and semi-automatic (more commonly known as recoil or gas operation) is usually determined by specific requirements of the sniper's role as envisioned in a particular organization, with each design having advantages and disadvantages. For a given cartridge, a bolt-action rifle is cheaper to build and maintain, more reliable, and lighter, due to fewer moving parts in the mechanism. In addition, the lack of an external magazine allows for more versatile fire-positioning, and the absence of uncontrolled automatic cartridge case ejection helped to avoid revealing the firer's position. Semi-automatic weapons can serve both as battle rifle and sniper rifle, and allow for a greater rate (and hence volume) of fire. As such rifles may be modified service rifles, an additional benefit can be commonality of operation with the issued infantry rifle. A bolt action is most commonly used in both military and police roles due to its higher accuracy and ease of maintenance. Anti-materiel applications such as mine clearing and special forces operations tend to use semi-automatics.
A Marine manually extracts an empty cartridge and chambers a new 7.62x51mm round in his bolt-action M40A3 sniper rifle. The bolt handle is held in the shooter's hand and is not visible in this photo.
A designated marksman rifle (DMR) is less specialized than a typical military sniper rifle, often only intended to extend the range of a group of soldiers. Therefore, when a semi-automatic action is used it is due to its ability to cross over into roles similar to the roles of standard issue weapons. There may also be additional logistical advantages if the DMR uses the same ammunition as the more common standard issue weapons. These rifles enable a higher volume of fire, but sacrifice some long range accuracy. They are frequently built from existing selective fire battle rifles or assault rifles, often simply by adding a telescopic sight and adjustable stock.
A police semi-automatic sniper rifle may be used in situations that require a single sniper to engage multiple targets in quick succession, and military semi-automatics such as the M110 SASS are used in similar "target-rich" environments.

[edit] Cartridge

In a military setting, logistical concerns are the primary determinant of the cartridge used, so sniper rifles are usually limited to rifle cartridges commonly used by the military force employing the rifle and match grade ammunition. Since large national militaries generally change slowly, military rifle ammunition is frequently battle-tested and well-studied by ammunition and firearms experts. Consequently, police forces tend to follow military practices in choosing a sniper rifle cartridge instead of trying to break new ground with less-perfected (but possibly better) ammunition.
Before the introduction of the standard 7.62x51mm NATO cartridge in the 1950s, standard military cartridges were the .30-06 Springfield or 7.62x63mm (United States), .303 British (7.7x56mmR) (United Kingdom) and 7.92x57mm (8mm Mauser) (Germany). The .30-06 Springfield continued in service with U.S. Marine Corps snipers during the Vietnam War in the 1970s, well after general adoption of the 7.62x51mm. At the present time, in both the Western world and within NATO, 7.62x51mm is currently the primary cartridge of choice for military and police sniper rifles.
Worldwide, the trend is similar. The preferred sniper cartridge in Russia is another .30 calibre military cartridge, the 7.62 x 54 mm R, which has similar performance to the 7.62x51mm. This cartridge was introduced in 1891, and both Russian sniper rifles of the modern era, the Mosin-Nagant and the Dragunov sniper rifle, are chambered for it.
Certain commercial cartridges designed with only performance in mind, without the logistical constraints of most armies, have also gained popularity in the 1990s. These include the 7 mm Remington Magnum (7.2x64mm), .300 Winchester Magnum (7.8/7.62x67mm), and the .338 Lapua Magnum (8.6x70mm). These cartridges offer better ballistic performance and greater effective range than the 7.62x51mm. Though they are not as powerful as .50 calibre cartridges, rifles chambered for these cartridges are not as heavy as rifles chambered for .50 calibre ammunition, and are significantly more powerful than rifles chambered for 7.62x51mm.
M82A1 SASR (Special Applications Scoped Rifle or Semi-Automatic Sniper Rifle), a .50 calibre sniper rifle used as an anti-materiel rifle.
Snipers may also employ anti-materiel rifles in sniping roles against targets such as vehicles, equipment and structures, or for the long-range destruction of explosive devices; these rifles may also be used against personnel.
Anti-materiel rifles tend to be semi-automatic and of a larger calibre than anti-personnel rifles, using cartridges such as the .50 BMG, 12.7x108mm Russian or even 14.5x114mm Russian and 20mm. These large cartridges are required to be able to fire projectiles containing payloads such as explosives, armour piercing cores, incendiaries or combinations of these, such as the Raufoss Mk211 projectile. Due to the considerable size and weight of anti-materiel rifles, 2- or 3-man sniper teams become necessary.

[edit] Barrel

Barrels are normally of precise manufacture and of a heavier cross section than more traditional barrels in order to reduce the change in impact points between a first shot from a cold barrel and a follow-up shot from a warm barrel. Unlike many battle and assault rifles, the bores are usually not chromed to avoid inaccuracy due to an uneven treatment.
When installed, barrels are often free-floated: i.e., installed so that the barrel only contacts the rest of the rifle at the receiver, to minimise the effects on impact point of pressure on the fore-end by slings, bipods, or the sniper's hands. The end of the barrel is usually crowned or machined to form a rebated area around the muzzle proper to avoid asymmetry or damage, and consequent inaccuracy. Alternatively, some rifles such as the Dragunov or Walther WA2000 provide structures at the fore-end to provide tension on the barrel in order to counteract barrel drop and other alterations in barrel shape.
External longitudinal fluting that contributes to heat dissipation by increasing surface area while simultaneously decreasing the weight of the barrel is sometimes used on sniper-rifle barrels.
Sniper-rifle barrels may also utilise a threaded muzzle or combination device (muzzle brake or flash suppressor and attachment mount) to allow the fitting of a sound suppressor. These suppressors often have means of adjusting the point of impact while fitted.
Military sniper rifles tend to have barrel lengths of 609.6 mm (24 inches) or longer, to allow the cartridge propellant to fully burn, reducing revealing muzzle flash and increasing bullet velocity. Police sniper rifles may use shorter barrels to improve handling characteristics. The shorter barrels' velocity loss is unimportant at closer ranges; projectile energy is more than sufficient.

[edit] Stock

The most common special feature of a sniper rifle stock is the adjustable cheek piece, where the shooter's cheek meets the rear of the stock. For most rifles equipped with a telescopic sight, this area is raised slightly, because the telescope is positioned higher than iron sights. A cheek piece is simply a section of the stock that can be adjusted up or down to suit the individual shooter. To further aid this individual fitting, the stock can sometimes also be adjusted for length, often by varying the number of inserts at the rear of the stock where it meets the shooter's shoulder. Sniper stocks are typically designed to avoid making contact with the barrel of the weapon.

[edit] Accessories

An adjustable sling is often fitted on the rifle, used by the sniper to achieve better stability when standing, kneeling, or sitting. The sniper uses the sling to "lock-in" by wrapping his non-firing arm into the sling forcing his arm to be still. Non-static weapon mounts such as bipods, monopods and shooting sticks are also regularly used to aid and improve stability and reduce operator fatigue.

[edit] Capabilities

[edit] Accuracy

Comparison of 0.5, 1, and 3 MOA extreme spread levels against a human torso at 800 m (left) and a human head at 100 m (right)
A military-issue battle rifle or assault rifle is usually capable of between 3-6 minute of angle (MOA) (1-2 mrad) accuracy. A standard-issue military sniper rifle is typically capable of 1-3 MOA (0.3-1 mrad) accuracy, with a police sniper rifle capable of 0.25-1.5 MOA (0.1-0.5 mrad) accuracy. For comparison, a competition target or benchrest rifle may be capable of accuracy up to 0.15-0.3 MOA (0.05-0.1 mrad).
A 1 MOA (0.3 mrad) average extreme spread for a 5-shot group (meaning the center-to-center distance between the two most distant bullet holes in a shot-group) translates into a 69% probability that the bullet's point of impact will be in a target circle with a diameter of 23.3 cm at 800 m (about 8 inches at 800 yards). This average extreme spread for a 5-shot group and the accompanying hit probability are considered sufficient for effectively hitting a human shape at 800 m distance.
In 1982 a U.S. Army draft requirement for a Sniper Weapon System was: "The System will: (6) Have an accuracy of no more than 0.75 MOA (0.2 mrad) for a 5-shot group at 1,500 meters when fired from a supported, non-benchrest position".[6] Actual Sniper Weapon System (M24) adopted in 1988 has stated maximum effective range of 800 meters and a maximum allowed average mean radius (AMR) of 1.9 inches at 300 yards from a machine rest, what corresponds to a 0.6 MOA (0.5 mrad) extreme spread for a 5-shot group when using 7.62 x 51 mm M118 Special Ball cartridges.[7][8][9]
Precision Weapon Engagement Ranges & Dispersion according to the US Army.
A 2008 United States military market survey for a Precision Sniper Rifle (PSR) calls for 1 MOA (0.3 mrad) extreme vertical spread for all shots in a 5-round group fired at targets at 300, 600, 900, 1,200 and 1,500 meters.[10][11] In 2009 a United States Special Operations Command market survey calls for 1 MOA (0.3 mrad) extreme vertical spread for all shots in a 10-round group fired at targets at 300, 600, 900, 1,200 and 1,500 meters.[12][13] The 2009 Precession Sniper Rifle requirements state that the PSR when fired without suppressor shall provide a confidence factor of 80% that the weapon and ammunition combination is capable of holding 1 MOA extreme vertical spread. This shall be calculated from 150 ten (10) round groups that were fired unsuppressed. No individual group shall exceed 1.5 MOA (0.5 mrad) extreme vertical spread. All accuracy will be taken at the 1,500 meter point.[14][15] In 2008 the US military adopted the M110 Semi-Automatic Sniper System which has corresponding maximum allowed extreme spread of 1.8 MOA (0.5 mrad) for a 5-shot group on 300 feet, using M118LR ammunition or equivalent.[7][8][16] In 2010 maximum bullet dispersion requirement for M24 .300 Winchester Magnum corresponds[7][8] 1.4 MOA extreme spread for 5 shot group on 100 meters.[17]
Although accuracy standards for police rifles do not widely exist, rifles are frequently seen with accuracy levels from 0.5-1.5 MOA (0.2-0.5 mrad).[18] For typical policing situations an extreme spread accuracy level no better than 1 MOA (0.3 mrad) is usually all that is required. This is because police typically employ their rifles at short ranges.[19] At 100 m or less, a rifle with a relatively low accuracy of only 1 MOA (0.3 mrad) should be able to repeatedly hit a 3 cm (1.2 inch) target. A 3 cm diameter target is smaller than the brain stem which is targeted by police snipers for its quick killing effect.[20]

[edit] Maximum effective range

Cartridge Maximum effective range[21]
7.62x39mm 350 m
5.56x45mm 800 m [22]
7.62x51mm (.308 Winchester) 800 m
7.62x54mm R 800 m
.30-06 Springfield 800 m
7 mm Remington Magnum 900–1,100 m
.300 Winchester Magnum 900–1,200 m
.338 Lapua Magnum 1,200-1,500 m
.50 BMG (12.7x99mm NATO)
12.7x108mm (Russian)
1,500–2,000 m
14.5x114mm 1,800–2,300 m
The listed maximum ranges of commonly used military and police sniping cartridges are mainly consistent with the claims made by military organizations and materiel manufacturers, but not based on consistent or strictly scientific criteria. The problem is only the bullet interacts with the target (can also be a materiel target for a sniper bullet). This implies that the properties of the target, properties and velocity of the employed bullet (parts) and desired effect are the most relevant factors.
Unlike police sniper rifles, military sniper rifles tend to be employed at the greatest possible distances so that range advantages like the increased difficulty to spot and engage the sniper can be exploited. The most popular military sniper rifles (in terms of numbers in service) are chambered for 7.62 mm (0.30 inch) caliber ammunition, such as 7.62x51mm and 7.62x54mm R. Since sniper rifles of this class must compete with several other types of military weapons with similar range, snipers invariably must employ skilled fieldcraft to conceal their position.
The recent trend in specialised military sniper rifles is towards larger calibres that offer relatively favorable hit probabilities at greater range, such as the anti-personnel .338 Lapua Magnum cartridge and anti-materiel cartridges like the .50 BMG and the 14.5x114mm. This allows snipers to take fewer risks, and spend less time finding concealment when facing enemies that are not equipped with similar weapons.
Maximum range claims made by military organizations and materiel manufacturers regarding sniper weapon systems are not based on consistent or strictly scientific criteria. The problem is only the bullet interacts after a relatively long flight path with the target (can also be a materiel target for a sniper bullet). This implies that variables such as the minimal required hit probability, local atmospheric conditions, properties and velocity of the employed bullet (parts), properties of the target and the desired terminal effect are major relevant factors that determine the maximum effective range of the employed system.

Sabtu, 12 November 2011

Mengenal Proses Kerja dan Jenis-Jenis PLTN

http://majalahenergi.com/media/kunena/attachments/legacy/images/reaktor_nuklir.png



Di dalam inti atom tersimpan tenaga inti (nuklir) yang luar biasa besarnya. Tenaga nuklir itu hanya dapat dikeluarkan melalui proses pembakaran bahan bakar nuklir. Proses ini sangat berbeda dengan pembakaran kimia biasa yang umumnya sudah dikenal, seperti pembakaran kayu, minyak dan batubara. Besar energi yang tersimpan (E) di dalam inti atom adalah seperti dirumuskan dalam kesetaraan massa dan energi oleh Albert Einstein : E = m C2, dengan m : massa bahan (kg) dan C = kecepatan cahaya (3 x 108 m/s). Energi nuklir berasal dari perubahan sebagian massa inti dan keluar dalam bentuk panas.  Dilihat dari proses berlangsungnya, ada dua jenis reaksi nuklir, yaitu reaksi nuklir berantai tak terkendali dan reaksi nuklir berantai terkendali. Reaksi nuklir tak terkendali terjadi misal pada ledakan bom nuklir. Dalam peristiwa ini reaksi nuklir sengaja tidak dikendalikan agar dihasilkan panas yang luar biasa besarnya sehingga ledakan bom memiliki daya rusak yang maksimal. Agar reaksi nuklir yang terjadi dapat dikendalikan secara aman dan energi yang dibebaskan dari reaksi nuklir tersebut dapat dimanfaatkan, maka manusia berusaha untuk membuat suatu sarana reaksi yang dikenal sebagai reaktor nuklir. Jadi reaktor nuklir sebetulnya hanyalah tempat dimana reaksi nuklir berantai terkendali dapat dilangsungkan. Reaksi berantai di dalam reaktor nuklir ini tentu sangat berbeda dengan reaksi berantai pada ledakan bom nuklir.
 Sejarah pemanfaatan energi nuklir melalui Pusat Listrik Tenaga Nuklir (PLTN) dimulai beberapa saat setelah tim yang dipimpin Enrico Fermi berhasil memperoleh reaksi nuklir berantai terkendali yang pertama pada tahun 1942. Reaktor nuklirnya sendiri sangat dirahasiakan dan dibangun di bawah stadion olah raga Universitas Chicago. Mulai saat itu manusia berusaha mengembangkan pemanfaatan sumber tenaga baru tersebut. Namun pada mulanya, pengembangan pemanfaatan energi nuklir masih sangat terbatas, yaitu baru dilakukan di Amerika Serikat dan Jerman. Tidak lama kemudian, Inggris, Perancis, Kanada dan Rusia juga mulai menjalankan program energi nuklirnya. 
Listrik pertama yang dihasilkan dari PLTN terjadi di Idaho, Amerika Serikat, pada tahun 1951. Selanjutnya pada tahun 1954 PLTN skala kecil juga mulai dioperasikan di Rusia. PLTN pertama di dunia yang memenuhi syarat komersial dioperasikan pertama kali pada bulan Oktober 1956 di Calder Hall, Cumberland. Sistim PLTN di Calder Hall ini terdiri atas dua reaktor nuklir yang mampu memproduksi sekitar 80 juta Watt tenaga listrik. Sukses pengoperasian PLTN tersebut telah mengilhami munculnya beberapa PLTN dengan model yang sama di berbagai tempat.

Energi Nuklir

Untuk mendapatkan gambaran tentang besarnya energi yang dapat dilepaskan oleh reaksi nuklir, berikut ini diberikan contoh perhitungan sederhana. Ambil 1 g (0,001 kg) bahan bakar nuklir 235U. Jumlah atom di dalam bahan bakar ini adalah :  N = (1/235) x 6,02 x 1023 = 25,6 x 1020 atom 235U.
 Karena setiap proses fisi bahan bakar nuklir 235U disertai dengan pelepasan energi sebesar 200 MeV, maka 1 g 235U yang melakukan reaksi fisi sempurna dapat melepaskan energi sebesar :
 E = 25,6 x 1020 (atom) x 200 (MeV/atom) = 51,2 x 1022 MeV
 Jika energi tersebut dinyatakan dengan satuan Joule (J), di mana 1 MeV = 1.6 x 10-13 J, maka energi yang dilepaskan menjadi :
 E = 51,2 x 1022 (MeV) x 1,6 x 10-13 (J/MeV) = 81,92 x 109 J
 Dengan menganggap hanya 30 % dari energi itu dapat diubah menjadi energi listrik, maka energi listrik yang dapat diperoleh dari 1 g 235U adalah :
 Elistrik = (30/100) x 81,92 x 109 J = 24,58 x 109 J
 Karena 1J = 1 W.s ( E = P.t), maka peralatan elektronik seperti pesawat TV dengan daya (P) 100 W dapat dipenuhi kebutuhan listriknya oleh 1 g 235U selama :
 t = Elistrik / P = 24,58 x 109 (J) / 100 (W) = 24,58 x 107 s
 Angka 24,58 x 107 sekon (detik) sama lamanya dengan 7,78 tahun terus-menerus tanpa dimatikan. Jika diasumsikan pesawat TV tersebut hanya dinyalakan selama 12 jam/hari, maka energi listrik dari 1 g 235U bisa dipakai untuk mensuplai kebutuhan listrik pesawat TV selama lebih dari 15 tahun.
 Contoh perhitungan di atas dapat memberikan gambaran yang cukup jelas mengenai kandungan energi yang tersimpan di dalam bahan bakar nuklir. Energi panas yang dikeluarkan dari pembelahan satu kg bahan bakar nuklir 235U adalah sebesar 17 milyar kilo kalori, atau setara dengan energi yang dihasilkan dari pembakaran 2,4 juta kg (2.400 ton) batubara. Melihat besarnya kandungan energi tersebut, maka timbul keinginan dalam diri manusia untuk memanfaatkan energi nuklir sebagai pembangkit listrik dalam rangka memenuhi kebutuhan energi dalam kehidupan sehari-hari. 

Proses Kerja Pusat Listrik Tenaga Nuklir

Proses kerja PLTN sebenarnya hampir sama dengan proses kerja pembangkit listrik konvensional seperti pembangkit listrik tenaga uap (PLTU), yang umumnya sudah dikenal secara luas. Yang membedakan antara dua jenis pembangkit listrik itu adalah sumber panas yang digunakan. PLTN mendapatkan suplai panas dari reaksi nuklir, sedang PLTU mendapatkan suplai panas dari pembakaran bahan bakar fosil seperti batubara atau minyak bumi.  Reaktor daya dirancang untuk memproduksi energi listrik melalui PLTN. Reaktor daya hanya memanfaatkan energi panas yang timbul dari reaksi fisi, sedang kelebihan neutron dalam teras reaktor akan dibuang atau diserap menggunakan batang kendali. Karena memanfaatkan panas hasil fisi, maka reaktor daya dirancang berdaya thermal tinggi dari orde ratusan hingga ribuan MW. Proses pemanfaatan panas hasil fisi untuk menghasilkan energi listrik di dalam PLTN adalah sebagai berikut : 
  • Bahan bakar nuklir melakukan reaksi fisi sehingga dilepaskan energi dalam bentuk panas yang sangat besar. 
  • Panas hasil reaksi nuklir tersebut dimanfaatkan untuk menguapkan air pendingin, bisa pendingin primer maupun sekunder bergantung pada tipe reaktor nuklir yang digunakan. 
  • Uap air yang dihasilkan dipakai untuk memutar turbin sehingga dihasilkan energi gerak (kinetik). 
  • Energi kinetik dari turbin ini selanjutnya dipakai untuk memutar generator sehingga dihasilkan arus listrik. 

Jenis-Jenis PLTN

Teknologi PLTN dirancang agar energi nuklir yang terlepas dari proses fisi dapat dimanfaatkan sebagai sumber energi dalam kehidupan sehari-hari. PLTN merupakan sebuah sistim yang dalam operasinya menggunakan reaktor daya yang berperan sebagai tungku penghasil panas. Dewasa ini ada berbagai jenis PLTN yang beroperasi. Perbedaan tersebut ditandai dengan perbedaan tipe reaktor daya yang digunakannya. Masing-masing jenis PLTN/tipe reaktor daya umumnya dikembangkan oleh negara-negara tertentu, sehingga seringkali suatu jenis PLTN sangat menonjol dalam suatu negara, tetapi tidak dioperasikan oleh negara lain. Perbedaan berbagai tipe reaktor daya itu bisa terletak pada penggunaan bahan bakar, moderator, jenis pendinging serta perbedaan-perbedaan lainnya.  Perbedaan jenis reaktor daya yang dikembangkan antara satu negara dengan negara lain juga dipengaruhi oleh tingkat penguasaan teknologi yang terkait dengan nuklir oleh masing-masing negara. Pada awal pengembangan PLTN pada tahun 1950-an, pengayaan uranium baru bisa dilakukan oleh Amerika Serikat dan Rusia, sehingga kedua negara tersebut pada saat itu sudah mulai mengembangkan reaktor daya berbahan bakar uranium diperkaya. Sementara itu di Kanada, Perancis dan Ingris pada saat itu dipusatkan pada program pengembangan reaktor daya berbahan bakar uranium alam. Oleh sebab itu, PLTN yang pertama kali beroperasi di ketiga negara tersebut menggunakan reaktor berbahan bakar uranium alam. Namun dalam perkembangan berikutnya, terutama Inggris dan Perancis juga mengoperasikan PLTN berbahan bakar uranium diperkaya.
 Sebagian besar reaktor daya yang beroperasi dewasa ini adalah jenis Reaktor Air Ringan atau LWR (Light Water Reactor) yang mula-mula dikembangkan di AS dan Rusia. Disebut Reaktor Air Ringan karena menggunakan H2O kemurnian tinggi sebagai bahan moderator sekaligus pendingin reaktor. Reaktor ini terdiri atas Reaktor Air tekan atau PWR (Pressurized Water Reactor) dan Reaktor Air Didih atau BWR (Boiling Water Reactor) dengan jumlah yang dioperasikan masing-masing mencapai 52 % dan 21,5 % dari total reaktor daya yang beroperasi. Sedang sisanya sebesar 26,5 % terdiri atas berbagai type reaktor daya lainnya. Berikut ini akan dibahas lebih lanjut berbagai jenis PLTN yang dewasa ini beroperasi diberbagai negara.
 • Reaktor Air Didih
 Pada reaktor air didih, panas hasil fisi dipakai secara langsung untuk menguapkan air pendingin dan uap yang terbentuk langsung dipakai untuk memutar turbin. Turbin tekanan tinggi menerima uap pada suhu sekitar 290 ºC dan tekanan sebesar 7,2 MPa. Sebagian uap diteruskan lagi ke turbin tekanan rendah. Dengan sistim ini dapat diperoleh efisiensi thermal sebesar 34 %. Efisiensi thermal ini menunjukkan prosentase panas hasil fisi yang dapat dikonversikan menjadi energi listrik. Setelah melalui turbin, uap tersebut akan mengalami proses pendinginan sehingga berubah menjadi air yang langsung dialirkan ke teras reaktor untuk diuapkan lagi dan seterusnya. Dalam reaktor ini digunakan bahan bakar 235U dengan tingkat pengayaannya 3-4 % dalam bentuk UO2. 
Pada tahun 1981, perusahaan Toshiba, General Electric dan Hitachi melakukan kerja sama dengan perusahaan Tokyo Electric Power Co. Inc. untuk memulai suatu proyek pengembangan patungan dalam rangka meningkatkan unjuk kerja sistim Reaktor Air Didih dengan memperkenalkan Reaktor Air Didih Tingkat Lanjut atau A-BWR (Advanced Boiling Water Reactor). Kapasitas A-BWR dirancang lebih besar untuk mempertinggi keuntungan ekonomis. Di samping itu, beberapa komponen reaktor juga mengalami peningkatan, seperti peningkatan dalam fraksi bakar, penyempurnaan sistim pompa sirkulasi pendingin, mekanisme penggerak batang kendali dan lain-lain.
• Reaktor Air Tekan
 Reaktor Air Tekan juga menggunakan H2O sebagai pendingin sekaligus moderator. Bedanya dengan Reaktor Air Didih adalah penggunaan dua macam pendingin, yaitu pendingin primer dan sekunder. Panas yang dihasilkan dari reaksi fisi dipakai untuk memanaskan air pendingin primer. Dalam reaktor ini dilengkapi dengan alat pengontrol tekanan (pessurizer) yang dipakai untuk mempertahankan tekanan sistim pendingin primer. 
Sistim pressurizer terdiri atas sebuah tangki yang dilengkapi dengan pemanas listrik dan penyemprot air. Jika tekanan dalam teras reaktor berkurang, pemanas listrik akan memanaskan air yang terdapat di dalam tangki pressurizer sehingga terbentuklah uap tambahan yang akan menaikkan tekanan dalam sistim pendingin primer. Sebaliknya apabila tekanan dalam sistim pendingin primer bertambah, maka sistim penyemprot air akan mengembunkan sebagian uap sehingga tekanan uap berkurang dan sistim pendingin primer akan kembali ke keadaan semula. Tekanan pada sistim pendingin primer dipertahankan pada posisi 150 Atm untuk mencegah agar air pendingin primer tidak mendidih pada suhu sekitar 300 ºC. Pada tekanan udara normal, air akan mendidih dan menguap pada suhu 100 ºC.
 Dalam proses kerjanya, air pendingin primer dialirkan ke sistim pembangkit uap sehingga terjadi pertukaran panas antara sistim pendingin primer dan sistim pendingin sekunder. Dalam hal ini antara kedua pendingin tersebut hanya terjadi pertukaran panas tanpa terjadi kontak atau percampuran, karena antara kedua pendingin itu dipisahkan oleh sistim pipa. Terjadinya pertukaran panas menyebabkan air pendingin sekunder menguap. Tekanan pada sistim pendingin sekunder dipertahankan pada tekanan udara normal sehingga air dapat menguap pada suhu 100 ºC. Uap yang terbentuk di dalam sistim pembangkit uap ini selanjutnya dialirkan untuk memutar turbin. 
Dari uraian di atas tergambar bahwa sistim kerja PLTN dengan Reaktor Air Tekan lebih rumit dibandingkan dengan sistim Reaktor Air Didih. Namun jika dilihat pada sistim keselamatannya, Reaktor Air Tekan lebih aman dibandingkan dengan Reaktor Air Didih. Pada Reaktor Air Tekan perputaran sistim pendingin primernya betul-betul tertutup, sehingga apabila terjadi kebocoran bahan radioaktif di dalam teras reaktor tidak akan menyebabkan kontaminasi pada turbin. Sedang pada Reaktor Air Didih, kebocoran bahan radioaktif yang terlarut dalam air pendingin primer dapat menyebabkan terjadinya kontaminasi pada turbin. Reaktor Air Tekan juga mempunyai keandalan operasi dan keselamatan yang sangat baik. Salah satu faktor penunjangnya adalah karena reaktor ini mempunyai koefisien reaktivitas negatif. Apabila terjadi kenaikan suhu dalam teras reaktor secara mendadak, maka daya reaktor akan segera turun dengan sendirinya. Namun karena menggunakan dua sistim pendingin, maka efisiensi thermalnya sedikit lebih rendah dibandingkan dengan Reaktor Air Didih.

• Reaktor Air Berat atau HWR (Heavy Water Reactor)

Reaktor Air Berat merupakan jenis reaktor yang menggunakan D2O (air berat) sebagai moderator sekaligus pendingin. Reaktor ini menggunakan bahan bakar uranium alam sehingga harus digunakan air berat yang penampang lintang serapannya terhadap neutron sangat kecil. PLTN dengan Reaktor Air berat yang paling terkenal adalah CANDU (Canadian Deuterium Uranium) yang pertama kali dikembangkan oleh Canada. Seperti halnya Reaktor Air tekan, Reaktor CANDU juga mempunyai sistim pendingin primer dan sekunder, pembangkit uap dan pengontrol tekanan untuk mempertahankan tekanan tinggi pada sistim pendingin primer. D2O dalam reaktor CANDU hanya dimanfaatkan sebagai sistim pendingin primer, sedang sistim pendingin sekundernya menggunakan H2O.  Dalam pengoperasian reaktor CANDU, kemurnian D2O harus dijaga pada tingkat 95-99,8 %. Air berat merupakan bahan yang harganya sangat mahal dan secara fisik maupun kimia tidak dapat dibedakan secara langsung dengan H2O. Oleh sebab itu, perlu adanya usaha penanggulangan kebocoran D2O baik dalam bentuk uap maupun cairan. Aliran ventilasi dari ruangan dilakukan secara tertutup dan selalu dipantau tingkat kebasahannya, sehingga kemungkinan adanya kebocoran D2O dapat diketahui secara dini. 
• Reaktor Magnox atau MR (Magnox Reactor)
Reaktor Magnox menggunakan bahan bakar dalam bentuk logam uranium atau paduannya yang dimasukkan ke dalam kelongsong paduan magnesium (Mg). Reaktor ini dikembangkan dan banyak dioperasikan oleh Inggris. Termasuk dalam reaktor jenis ini adalah reaktor penelitian pertama di dunia yang dibangun oleh tim pimpinan Enrico Fermi di Chicago, Amerika Serikat. Reaktor Magnox menggunakan CO2 sebagai pendingin, grafit sebagai moderator, dan uranium alam sebagai bahan bakar. Panas hasil fisi diambil dengan mengalirkan gas CO2 melalui elemen bakar menuju ke sistim pembangkit uap. Dari pertukaran panas ini akan dihasilkan uap air yang selanjutnya dapat dipakai untuk memutar turbin. 
Hasil dari usaha dalam penyempurnaan unjuk kerja Reaktor Magnox adalah diperkenalkannya Reaktor Maju Berpendingin Gas atau AGR (Advanced Gas-cooled Reactor). Dalam reaktor ini juga menggunakan CO2 sebagai pendingin, grafit sebagai moderator, namun bahan bakarnya berupa uranium sedikit diperkaya yang dibungkus dengan kelongsong dari baja tahan karat. Pengayaan bahan bakar ini dimaksudkan untuk meningkatkan efisiensi thermal dan fraksi bakar bahan bakarnya. 
• Reaktor Temperatur Tinggi atau HTR (High Temperature Reactor)
Reaktor Temperatur Tinggi adalah jenis reaktor yang menggunakan pendingin gas helium (He) dan moderator grafit. Reaktor ini mampu menghasilkan panas hingga 750 ºC dengan efisiensi thermalnya sekitar 40 %. Panas yang dibangkitkan dalam teras reaktor dipindahkan menggunakan pendingin He (sistim primer) ke pembangkit uap. Dalam pembangkit uap ini panas akan diserap oleh sistim uap air umpan (sistim sekunder) dan uap yang dihasilkannya dialirkan ke turbin. Dalam reaktor ini juga ada sistim pemisah antara sistim pendingin primer yang radioaktif dan sistim pendingin sekunder yang tidak radioaktif. 
Elemen bahan bakar yang digunakan dalam Reaktor Temperatur Tinggi berbentuk bola, tiap elemen mengandung 192 gram carbon, 0,96 gram 235U dan 10,2 gram 232Th yang dapat dibiakkan menjadi bahan bakar baru 233U. Proses fisi dalam teras reaktor mampu memanaskan gas He hingga mencapai suhu 750 _C. Setelah terjadi pertukaran panas dengan sistim sekunder, suhu gas He akan turun menjadi 250 ºC. Gas He selanjutnya dipompakan lagi ke teras reaktor untuk mengambil panas fisi, demikian seterusnya. Dalam operasi normal, reaktor ini membutuhkan bahan bakar bola berdiameter 60 mm sebanyak ± 675.000 butir yang diletakkan di dalam teras reaktor. Rata-rata setiap butir bahan bakar tinggal di dalam teras selama enam bulan pada operasi beban penuh. q

Daftar Pustaka

  1. ANONIM, Nuclear Power, the Environment and Man, International Atomic Energy Agency, Vienna, Austria (1984).
  2. ANONIM, Nuclear Energy in Japan, International Nuclear Corporation Center, Japan (1984).
  3. ANONIM, Pengenalan Pembangkit Listrik Tenaga Nuklir (PLTN), Atomos, Vol 1(2), Badan Tenaga Atom Nasional, Jakarta (1986).
  4. ANONIM, Peningkatan Peranan Energi Nuklir di 15 Negara, Buletin BATAN, Th. XII (3), Badan Tenaga Atom Nasional (1991) Hal. 28-29
  5. ANONIM, Energi Nuklir, Ilmu Pengetahuan Populer, Vol. 3, Grolier International Inc./P.T. Widyadara (1997) hal. 266-279.
  6. BENNETT, L.L., et.al., Nuclear Power Performance and Safety, IAEA Bulletin, Vol. 29 (4), Vienna, Austria (1987) pp. 5-12.
  7. COHEN, B. L., Concept of Nuclear Physics, Tata McGraw-Hill Publishing Company Ltd., New Delhi (1982).
  8. EICHHOLZ, G. G., Environmental Aspects of Nuclear Power, An Arbor Science Publisher Inc., Mich 48106 (1977).
  9. GLASSTONE, S. and JORDAN, W. H., Nuclear Power and Its Environment Effects, American Nuclear Society, Illinois (1981).
  10. KLUEH, RONALD, Future Nuclear Reactor - Safety First ?, New Scientist (April 1986) pp. 41-45.
  11. KNIEF, R. ALLEN, Nuclear Energy Technology, Hemisphere Publishing Corporation, Washington (1981)
  12. MURRAY, RAYMOND L., Nuclear Energy, Pergamon Press, Oxford (1980).
Mukhlis Akhadi, Ahli Peneliti Muda di Badan Tenaga Nuklir nasional